Вы здесь

Генноинженерно-модифицированные организмы, разрешенные к выращиванию и разведению в России.

Матвеева Т.В.

Санкт-Петербургский государственный университет, Санкт-Петербург, РФ

Азарахш М.

Санкт- Петербургский государственный университет.

Ключевые слова
ГМО, цисгенные организмы, РНК-интерференция, редактирование генома.,

Резюме

В июле 2016 года Государственной Думой принят Федеральный закон "О внесении изменений в отдельные законодательные акты Российской Федерации в части совершенствования государственного регулирования в области генно-инженерной деятельности" (03.07.2016 N 358-ФЗ) . Данный обзор посвящен анализу статьи 4 данного закона, а именно обсуждению того, какие ГМО могут быть разрешены к выращиванию и разведению в России.

Текст статьи: 

Ссылки

  1. Федеральный закон "О внесении изменений в отдельные законодательные акты Российской Федерации в части совершенствования государственного регулирования в области генно-инженерной деятельности" (03.07.2016 N 358-ФЗ) [ Federal Law "On Amendments to Certain Legislative Acts of the Russian Federation in terms of improving the state regulation in the field of genetic engineering" (03.07.2016 N 358-FL (In Rus)] http://www.consultant.ru/document/cons_doc_LAW_200732/

  2. Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis Cell.11(2): 26371doi: 10.1016/0092-8674(77)90043-5

  3. Chilton MD, Tepfer D, Petit A, David C, Casse Delbart FT(1982) Agrobacterium rhizogenesinsert T-DNA into the genome of the host plant root cells. Nature. 295 (5848): 432–434. doi: 10.1038/295432a0

  4. Burr T, Otten L (1999)Crown gall of grape: biology and disease management.Annu Rev Phytopathol37(1): 53–80. doi:10.1146/annurev.phyto.37.1.53

  5. White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequence homologous to Agrobacterium rhizogenes TDNA in the genomes of uninfected plants. Nature 301:348–350 doi: 10.1038/301348a0

  6. Matveeva TV, Bogomaz DI, PavlovaOA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant Microbe Interact 25:1542–1551 doi: 10.1094/MPMI-07-12-0169-R

  7. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Nat Acad Sci U S A 112(18): 5844-5849. doi: 10.1073/pnas.1419685112.

  8. Schouten, H.; Krens, F.; Jacobsen, E. (2006). "Do cisgenic plants warrant less stringent oversight?". Nature Biotechnology. 24 (7): 753. doi:10.1038/nbt0706-753. PMID16841052

  9. Jochemsen H. (2000) Toetsen en begrenzen: Een ethische en politieke beoordeling van de moderne biotechnologie. Buijten & Schipperheijn 263 p.

  10. Matzke MA, Matzke AJM. (2004). «Planting the Seeds of a New Paradigm.». PLoS Biol 2 (5): e133. DOI:10.1371/journal.pbio.0020133. PMID 15138502

  11. Bernstein E, Caudy A, Hammond S, Hannon G (2001). «Role for a bidentate ribonuclease in the initiation step of RNA interference». Nature 409 (6818): 363–6. DOI:10.1038/35053110. PMID 11201747.

  12. Sun G. (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol. Sep;80(1):17-36. doi: 10.1007/s11103-011-9817-6. Epub 2011 Aug 27.

  13. Holmquist G, Ashley T (2006). «Chromosome organization and chromatin modification: influence on genome function and evolution». Cytogenet Genome Res 114 (2): 96–125. DOI:10.1159/000093326. PMID 16825762.

  14. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal S, Moazed D (2004). «RNAi-mediated targeting of heterochromatin by the RITS complex». Science 303 (5658): 672–6. DOI:10.1126/science.1093686. PMID 14704433.

  15. МатвееваТ.В. Не совсем трансгенные растения. Вестник защиты растений. 2016. 3(89). С 106-108.[ MatveevaT.V. Not quite transgenic plants. Plant Protection Bulletin. 2016. 3(89). С 106-108 (In Rus.)]

  16. Belinda M., (2001) First Fruit: The Creation of the Flavr Savr Tomato and the Birth of Biotech Foods by McGraw-Hill Companies.- 269 p. ISBN10: 0071360565 ISBN13: 9780071360562

  17. Carter N. (2012) Petition for Determination of Nonregulated Status: Arctic™ Apple (Malus x domestica) Events GD743 and GS784. United States Department of Agriculture – Animal and Plant Health Inspection Service. 163 p.

  18. Clark P., Habig J., Ye J., Collinge. (2014 ) Petition for Determination of Non-regulated Status for Innate Potatoes with Late Blight Resistance, Low Acrylamide Potential , Reduced Black Spot, and Lowered Reducing Sugars: Russet Burbank Event W8, United States Department of Agriculture – Animal and Plant Health Inspection Service. 199p. https://www. isaaa.org Дата последнего обращения 10.12.16.

  19. Власов В.В., Медведев С.П., Закиян С.М.«Редакторы» геномов. От цинковых пальцев до CRISPR// Наука из первых рук.— 2014.— № 2(56).— С. 44—53. [Vlasov, VV, Medvedev SP, Zakian SM (2014) Genomes "Editors». From zinc finger to CRISPR // Science at first hand. № 2 (56). - P. 44-53 (In Rus.)]

  20. Sontheimer E.J., Barrangou R.(2015) The Bacterial Origins of the CRISPR Genome-Editing Revolution// Human Gene Therapy 26(7): 413—424. DOI:10.1089/hum.2015.091.— PMID 26078042

  21. Bhaya D, Davison M, Rodolphe B. (2011). CRISPR–Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics 45, 273–297

  22. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magaádan AH, Moineau S. (2010) . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

  23. Marraffini LA, Sontheimer EJ. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Review of Genetics 11: 181–190.

  24. Horvath P, Barrangou R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170.

  25. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences 34, 401–407.

  26. Deveau H, Garneau JE, Moineau S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annual review of microbiology.64:475–493

  27. Mojica FJ, Diez-Villasensor C, Garcia-Martinez J, Soria E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. (Jinek, M. et al. 2013).

  28. Hou Zhonggang, Zhang Yan, Propson N.E., Howden S.E., Chu Li-Fang, Sontheimer E.J., Thomson J.A.(2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis// Proc. Nat. Acad. Sci. USA. 110(39):15644—15649. DOI:10.1073/pnas.1313587110.— PMID 23940360;

  29. Gasiunas G, Barrangou R, Horvath P, Siksnys V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America.;109:E2579–2586.

  30. Jiang Wenyan, Maniv I., Arain F., Wang Yaying, Levin B.R., Marraffini L.A.(2013) Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids// PLoS Genetics.—.— Vol.9, no.9.— P.e1003844.— DOI:10.1371/journal.pgen.1003844.— PMID 24086164

  31. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. (2013) RNA-programmed genome editing in human cells. eLife.;2:e00471.

  32. Li J, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.

  33. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9-guided endonuclease. Nature Biotechnology 31: 691–693.

  34. Shan Q, Wang Y, Li J, et al. (2013). Targeted genome modification of crop plants using a CRISPR–Cas system. Nature Biotechnology 31: 686–688.

  35. Xie K, Yang Y.( 2013). RNA-guided genome editing in plants using a CRISPR–Cas system. Molecular Plant 6, 1975–1983.

  36. Ji X, Zhang H, Zhang Y, Wang Y, Gao C.(2015)Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 1:15144. doi: 10.1038/nplants.2015.144.Xie, K. & Yang, 2013

  37. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G.(2015)Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta. Jan;241(1):271-84. doi: 10.1007/s00425-014-2180-5. Epub 2014 Oct 1

  38. Waltz E. (2016) Gene-edited CRISPR mushroom escapes US regulation. A fungus engineered with the CRISPR–Cas9 technique can be cultivated and sold without further oversight. Nature V. 532. P.293

© Экологическая генетика 2003-2015