You are here

FUNCTIONAL ANALYSIS OF CT-DNAS IN NATURALLY TRANSFORMED PLANTS, RECENT FINDINGS AND GENERAL CONSIDERATIONS

Leon Otten

Institut de Biologie Moléculaire des Plantes, Strasbourg, France

Ecological genetics 2016; XVI (4) : 26-31
Keywords
cT-DNAs, natural GMOs, horizontal gene transfer, speciation,

Abstract

Several cases have been reported of naturally transformed plant species. These plants contain cellular T-DNAs (cT-DNAs) derived from ancient infections by Agrobacterium. We have determined the structure of 4 different cT-DNAs in N. tomentosiformis, the paternal ancestor of N. tabacum, and found several intact open reading frames. Among these, TB-mas2’ and TA-rolC were tested for activity. TB-mas2’ encodes desoxyfructosylglutamine (DFG) synthesis. Some N. tabacum cultivars show very high TB-mas2’ expression and produce DFG in their roots. The TA-rolC gene is biologically active and when expressed under strong constitutive promoter control, generates growth changes in N. tabacum. Based on these first data on the structure and function of cT-DNAs I present a theoretical model on the origin and evolution of naturally transformed plants, which may serve as a basis for further research in this field.

Full text: 

References

  1. Otten L, De Ruffray R. Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet. 1994;245:493-505.

  2. Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Russ J Genet. 2015;51: 121-129.

  3. Spena A, Schmülling T, Koncz C, Schell JS. Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J. 1987; 6:3891-3899.

  4. Nilsson O, Olsson O. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant. 1997;100, 463-473.

  5. Schell J, Van Montagu M, De Beuckeleer M, De Block M, Depicker A, De Wilde M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J, Silva B, Van Vliet F, Villarroel R. Interactions and DNA Transfer between Agrobacterium tumefaciens, the Ti-Plasmid and the Plant Host. P Roy Soc Lond B Bio. 1979;204:251-266.

  6. White F, Garfinkel D, Huffman GA, Gordon M, Nester EW. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. 1983;301:348 – 350.

  7. Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW. An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature. 1986;319:422-427.

  8. Suzuki K, Yamashita I, Tanaka N. Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. 2002; 32:775-787.

  9. Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA. Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. MPMI. 2012;25:1542-1551.

  10. Matveeva TV, Lutova LA. Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci. 2014;11(5):326. doi: 10.3389/fpls.2014.00326.

  11. Chen K, Dorlhac de Borne F, Szegedi E, Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J. 2014;80:669-682.

  12. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Nat Acad Sci USA. 2015;112:5844-5849.

  13. Meyer A, Tempé J, Costantino P. Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes. In Plant–Microbe Interactions, Vol. 5 (Stacey, G. and Keen, N.T., eds). St. Paul, Minnesota: APS Press, 2000:93–139.

  14. Chen K, Dorlhac de Borne F, Julio E, Obszynski J, Pale P, Otten, L. 2016. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring GMO Nicotiana tabacum. Plant J. 2016; in press.

  15. Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D. Common evolutionary origin of the central portion of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol. 1988;11:731-744.

  16. Aoki S, Syono K. Function of Ngrol genes in the evolution of Nicotiana glauca conservation of the function of NgORF13 and NgORF14 after ancient infection by an Agrobacterium rhizogenes-like ancestor. Plant Cell Physiol. 1999;40:222-230.

  17. Fründt C, Meyer AD, Ichikawa T, Meins F. A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root disks. Mol Gen Genet. 1998;259:559-68.

  18. Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L. Biological activity of the Agrobacterium rhizogenes-derived rolC gene of Nicotiana tabacum and its functional relationship to other plast genes. MPMI. 2011;24:44-53.

  19. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London, John Murray.

  20. Baek CH, Farrand SK, Park DK, Lee KE, Hwang W, Kim KS. Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae. FEMS Microbiol Ecol. 2005;53:221-233.

© Ecological genetics 2003-2014